The Conjugacy Problem for Graph Products with Cyclic Edge Groups
نویسندگان
چکیده
A graph product is the fundamental group of a graph of groups Amongst the simplest examples are HNN groups and free products with amalgamation. The conjugacy problem is solvable for recursively presented graph products with cyclic edge groups over finite graphs if the vertex groups have solvable conjugacy problem and the sets of cyclic generators in them are semicritical. For graph products over infinite graphs these conditions are insufficient: a further condition ensures that graph products over infinite graphs of bounded path length have solvable conjugacy problem. These results generalise the known ones for HNN groups and free products with amalgamation.
منابع مشابه
The Conjugacy Problem for Finite Graph Products
A finite graph product is the fundamental group of a finite graph of groups. Finite graph products with finite cyclic edge groups are shown to inherit a solvable conjugacy problem from their vertex groups under certain conditions, of which the most important is that all the edge group generators in each vertex group are powers of a common central element.
متن کاملSome finite groups with divisibility graph containing no triangles
Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...
متن کاملOn a graph related to permutability in finite groups
For a finite group G we define the graph Γ(G) to be the graph whose vertices are the conjugacy classes of cyclic subgroups of G and two conjugacy classes A, B are joined by an edge if for some A ∈ A, B ∈ B A and B permute. We characterise those groups G for which
متن کاملOn the Regular Power Graph on the Conjugacy Classes of Finite Groups
emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.
متن کاملThe Word Problem and Related Results for Graph Product Groups
A graph product is the fundamental group of a graph of groups. Amongst the simplest examples are HNN groups and free products with amalgamation. The torsion and conjugacy theorems are proved for any group presented as a graph product. The graphs over which some graph product has a solvable word problem are characterised. Conditions are then given for the solvability of the word and order proble...
متن کامل